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Abstract. A correct procedure for constructing supersymmetry in three dimensions is 
presented. The degeneracies are found between states of the same I but different n and Z 
and the previous results on the Coulomb and the three-dimensional isotropic oscillator 
problems are reestablished. We also consider the hydrogen-helium problem and find 
supersymmetry to hold to a good approximation. 

1. Introduction 

The study of supersymmetric quantum mechanics has evinced [l-51 a lot of interest 
of late. As is well known [ 6 ] ,  the theory of supersymmetry (SUSY) relates integral spins 
to half-integral spins and all the essential features of it are contained in field theories 
of (1 + 0) dimensions, i.e. supersymmetric quantum mechanics. In fact, SUSY has been 
found to give encouraging results towards understanding degeneracies in atoms and 
establishing interesting atomic connections. 

Mathematically, a one-dimensional Hamiltonian 

is supersymmetric if the corresponding potentials satisfy 

where the primes denote derivatives with respect to the variable x and U ( x )  is related 
to the ground-state wavefunction +h0(x) as 

v, = $ p + t U f I  (2) 

U = -2 log $O(X). ( 3 )  
The above relation implies that no nodes are associated [ 3 ]  with the ground-state 

It is easy to establish ( 2 )  if we note that $o satisfies 
wavefunction, U ( x )  being a real function of x. 

1 d2 
(4) 

where V ( x )  is the potential associated with the Hamiltonian H. We thus have 

( 5 a )  V - Eo = Q uf2 -iull 
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and as a result 

V ,  = V -  Eo V - =  V -  Eo+iU". ( 5 b )  

These are same as (2). Thus the lowest state of V ,  lies at zero energy, the negative 
sign in (3) ensuring that U" remains positive. 

Given a connecting potential U, a supersymmetric Hamiltonian H may be set up 
as follows: 

H = $( QQ + QQ) = f( p Z + ~ U ' * ) Z  + i U " ~ z  

Q = ( p - i f U ' ) a '  Q = ( p  + i i U ' ) a -  ( 6 6 )  

( 6 a )  

where Q and Q are defined as 

with {a- ,  a+} = 1, [a+, U - ]  = U,. The supersymmetric generators (Q ,  0 )  obey the 
algebra 

[Q, HI = [Q, HI = 0 

CO, Q>={Q,  Q > = o  ( 7 )  

<Q, 0) = 2H. 

Explicitly, one may construct (Q,  0 )  on the 2 x 2  matrix space of H+ = f Q Q  and 
H- = and it may be easily seen that, except for the lowest eigenvalue of U,, those 
of H, and H- coincide, thereby constituting a supersymmetric spectrum. Furthermore, 
if one expresses H ,  and H- in terms of the creation and  annihilation operators, the 
bosons and  fermions correspond to H ,  and H - ,  respectively. 

The above gives very briefly the basic steps in constructing a supersymmetric 
Hamiltonian for any one-dimensional quantum mechanical system whose ground-state 
energy and wavefunction are known. As an  example, one may consider [ l ]  the case 
of the one-dimensional harmonic oscillator. 

To formulate S U S Y  in three dimensions, one may subject the radial part of the 
Schrodinger equation to a one-dimensional construction of SUSY.  In fact, this is how 
Kostelecky and  Nieto ( K N )  [2,4] have proposed a supersymmetric construction of the 
hydrogen atom. They have found the spectrum of V+ and V- to describe the hydrogenic 
ns-np degeneracy and  have thus interpreted their results as giving a supersymmetric 
connection between various atoms. 

However, a non-trivial aspect of the interpretation of S U S Y  for the radial problem 
has recently been pointed [3] out by Haymaker and Rau ( H R ) .  They have argued that 
the radial equation being defined in the region 0 < r < CO is not a truly one-dimensional 
problem. As such, the S U S Y  construction developed for the one-dimensional problem 
is not formally applicable to such radial problems. As a counter-example, they have 
pointed out the isotropic oscillator problem whose energy eigenvalues are separated 
by jumps of two units of 1. The standard one-dimensional approach would only 
establish degeneracies between partner states with 1 and  1 + 1, respectively. 

H R  have advocated a transformation of the half-line problem to a full-line (--a, CO) 

one through a transformation of the type x = In y thereby passing from the radial to 
the Morse problem. In  this paper we would like to take up the three-dimensional 
problem and  establish a procedure for constructing the relevant SUSY transformations. 
In fact, the approach of H R  is beset with some difficulties, the chief being that the 
connecting potential turns out to be n dependent. 
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2. Supersymmetry in three dimensions 

2.1. The model of K N  

It is well known [ 7 ]  that for a spherically symmetric potential, the Schrodinger equation 
in three dimensions separates into an angular and a radial part. The solution of the 
former is in the standard form of spherical harmonics and does not play any significant 
role in our discussion. The radial equation, being a single-variable equation, may be 
subjected to a one-dimensional construction of SUSY. 

To this end, let us examine the standard one-dimensional approach by setting up 
a supersymmetric scheme of the Coulomb problem. We follow the approach [ 2 ]  of 
K N  as analysed [3] by n R .  

The radial equation of the Coulomb problem is 

where n 3 I +  1 and xnr(0) =0, En = - 1 / 2 n 2 ,  y = f m Z e 2 .  
To find the connecting potential U ( y ) ,  we then solve ( 2 )  for a fixed value of 1. Thus 

where the primes now denote derivatives with respect to the variable y .  By inspection, 
the solution of this equation can be found to be 

U ( y )  =-- 2Y 2 ( 1 + 1 ) 1 n y .  
1 + 1  

It may be remarked that U ( y )  is independent of n which is as it should be. Relation 
(10) gives V+ as 

1 1 1 ( 1 + 1 )  v ---+- 
+ -  y 2 ( 1 + 1 ) 2 + 7  

which defines a series of Bohr levels with n starting from 1 + 1, i.e. n 3 1 + 1 and energies 

Given V + ,  its S U S Y  partner V- can be constructed using (56). V- is found to be 
;[( 1 + 1 ) - 2 -  n-21. 

1 1 ( 1 + 1 ) ( 1 + 2 )  v- = --+- 
y 2(1+1)2+ 2y2 

However, for V- the lowest state of Bohr levels begins from n = I +  2, i.e. n 3 I + 2. 
Thus the spectrum of V+ and V- can be used to give a supersymmetric interpretation 

of the well known hydrogenic ns-np degeneracy. To see this point more clearly, we 
may set 1 = 0. Then V+ describes the ns states with n 2 1 while V- corresponds to np 
levels with n 3 2 .  

In this way, K N  were led to formulate a supersymmetric connection between atoms 
in three dimensions. It is not out of place to mention that this formalism establishes 
degeneracies between states of same n but different 1. 

As is obvious from ( 2 ) ,  in order to obtain the connecting potential U ( y ) ,  one is 
required [ 8 ]  to solve a second-order differential equation which is of Riccati form. As 
such, ( 2 )  is solvable only for some particular forms of the potential. Besides the 
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Coulomb potential, the radial equation also turns out to be solvable for the isotropic 
oscillator case. In the following we apply the approach of K N  to this problem. 

The radial equation for the isotropic oscillator is 

) (-; -$+;y2+--T-- 1 ( 1 +  1) E,  x,(y) = 0 

2Y 
where n = l ,  1+2, 1+4 , . . . ,  and E , = n + &  y = ( m w / A ) ” ’ r .  

turns out to be 
Proceeding as before, the connecting potential U ( y )  may be found easily. U ( y )  

~ ( y ) = y * - 2 ( 1 + 1 ) 1 n y  (13) 

and the corresponding supersymmetric partner potentials V, are 

As in the Coulomb case, here we find a degeneracy of partner states with I and I +  1. 
However, in contrast to the Coulomb problem, the energy levels of the isotropic 
oscillator are separated by two units. 

Thus the isotropic oscillator problem serves as a good counter-example to show 
that a straightforward one-dimensional approach does not always work towards estab- 
lishing the correct supersymmetric connection between energy levels. 

In the next subsection we go on to describe the scheme of H R  which does seem to 
avoid the difficulties of the naive one-dimensional approach. As we shall see, a 
connection between isoelectronic ions emerges quite naturally, in contrast to those 
between states of different atoms. 

2.2. The model of H R  

The model [3] of H R  rests on a very pertinent observation that a radial equation being 
defined only on a half line ( 0 , s )  is not a true one-dimensional problem. To apply 
the supersymmetric construction procedure developed for the one-dimensional prob- 
lems, the prescription of these authors is to go the full line (-CO, CO) through a 
transformation of the type x = In y. From the transformed equation one could construct 
the V-. The equation for V - ,  when transformed back to the half line, ought to give 
the correct supersymmetric partner equation to (8) or (12). 

Consider the Coulomb case. Using x = In y ,  the radial equation (8)  for the Coulomb 
problem takes the form 

One can again solve for U ( x )  to obtain 

U ( x )  = 2e‘/n + (1 -2n)x. 

Note that in this approach U ( x )  becomes n dependent. From (16), the supersymmetric 
partner potentials can be found easily. These are 

v + = e ” / 2 n ’ - e ‘ + f ( ~ - n ) ’  ( 1 7 4  
V- = e”/2n2 - ( 1 - I /  n ) e‘ + - n )’. (176) 
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After such a construction with the true one-dimensional variable x, one should not 
transform (17b) back to the original variable y to get the correct supersymmetric 
partner equation to (8). In  terms of y ,  we obtain 

1 d2 1 1 -+- 1 1(1+1) [ 2 dy' 2n2 ( n) y 2y' ]xn'(y)=O' 

This equation is identical to (8) except for the coefficient of the l / y  term. However, 
if we divide (18) by (1 - 1/ n)', then redefine (1 - 1/ n)y as the running variable y and 
absorb the (1 - l / n )  factor into the definition of the nuclear charge 2, we find that 
(18) describes states with quantum numbers 1 and n - 1 and charge Z( l -  l / n ) .  Thus 
comparing (18) with (8) we find that the degeneracy arises (note that both (8) and 
(18) have the same eigenenergy) between states of the same 1 but different n and Z. 

Thus the procedures of KN and H R  lead to two different types of degeneracies for 
the Coulomb problem. However, as we shall presently see, the method of H R  does 
enable one to explain the degeneracy of the isotropic oscillator if properly applied. 

Let us transform (12) to the full line through a transformation x = 2 In y. We obtain 

This gives a connecting potential U ( x )  as 

U(x) = e" - ( n  + t ) x  (20) 

and the corresponding supersymmetric partner potentials V, turn out to be 

Transforming V- back to half line, the partner equation to (12) may be readily obtained: 

1 d2 

One can at once see that (23) correctly describes the degeneracies of the isotropic 
oscillator problem, the energy difference between (12) and (23) yielding the correct 
factor of two units. It may be noted that the 1 value in (23) remains the same as in (12). 

Although this approach does explain the shift of the energy eigenvalues of the 
isotropic oscillator, it is not free from difficulties. For one thing, the connecting 
potential U in (16) as well as in (20) turns out to be n dependent whereas, by definition, 
(3) is related to the ground-state wavefunction only. 

In  the next section we take up this problem and establish a procedure for construct- 
ing the relevant supersymmetric transformations. Throughout, we shall focus our 
attention on the three-dimensional isotropic oscillator case. For the Coulomb problem, 
the approach is analogous and shall not be considered in detail. 

3. A modified approach 

A crucial point not noted [3] by H R  (or at least one which does not come out clearly 
from their work) is that to each value of E, in (121, the transformed expression for 
V, in the full line can have an arbitrary number (say m )  of energy eigenvalues. In 
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other words, on transforming to the full line, there can be n Hamiltonians (H+) each 
having a set of m eigenvalues. These ( n  x m )  possible levels of eigenvalues can be 
arranged in the form of a matrix. Thus, while the energy matrix E corresponding to 
( 1 2 )  is only diagonal (the diagonal members being E , ,  E*, , , .), the transformed matrix 
E' contains off-diagonal entries as well. In this way we have one set of E' for V+ and 
another for V - .  However, when we transform V- back to the half line, the resulting 
diagonal matrix may be considered as a supersymmetric partner to ( 1 2 ) .  

With these remarks, we proceed to the full-line construction of the isotropic 
oscillator equation (1 2 ) .  Employing as usual the following transformations: 

x = 2 1 n  y x = 4 ( x )  exp(tx) ( 2 4 )  

one finds 

which represents the equation of a one-dimensional Morse potential 6 e2x - + E ,  ex with 
eigenvalues -Q( 1 + i)2. However, the Morse potential depends on n. As such, for each 
value of n in ( 2 5 )  one can define a V,, each having a spectrum of m eigenvalues. 

Consider n = 1. The corresponding V+ is 

( 2 6 )  

having as energy eigenvalues t( m - I)( m + I+ 1). Note that 1 has been kept fixed. Since 
we are interested in the diagonal terms only (for only these will be relevant when we 
transform back to the half line), we set m = 1 in ( 2 6 )  and solve for U and V- from 
( 2 ) .  We find 

v = L e 2 X - 1 ( 5 )  "+'( + 8  4 2 e 8 m+;)* 

= ex -$x ( 2 7 a )  

( 2 7 b )  

In a similar way, the potentials V- corresponding to n = m = 2,  n = m = 3, . . . , can be 
found. These are 

v- = 1 2x - 1(1) .x + L ( 9 2  8 e  4 2  e 8 2 .  

and so on. 
It may be noted that the energy eigenvalues corresponding to ( 2 7 b ) ,  ( 2 7 c ) ,  

( 2 7 d ) ,  . . . , form the diagonal members of a general ( n  x m )  matrix Em,,, 
We are now left with the task of transforming back to the half line. Using ( 2 4 )  

again, we transform ( 2 7 b ) ,  ( 2 7 c ) ,  ( 2 7 d )  and similar expressions for m = 4 , 5 , .  . . , to 
the half line to obtain 

as the partner equation to ( 1 2 )  for n = m. As expected, the energy eigenvalues in ( 2 8 )  
are shifted by two units, thus exhibiting the spectra of the isotropic oscillator. 

The whole purpose of presenting this exercise is to point out that the indices n and 
m in ( 2 5 )  and ( 2 6 )  are arbitrary indices (for a fixed value of I )  and one  can choose 
any value of one quite independent of the other. This idea is not brought out clearly 
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in the approach of HR.  In fact, with U ( y )  defined by (16) or (20), this freedom does 
appear to be lost. The fact that the end results are the same is not a surprise since the 
diagonal values of E,,,,, are only meaningful in the half line. 

In  the present formalism, the U have been considered individually in the full line. 
As a result, when we transform back to the half line, we obtain a series of possible 
V- each having the energy value separated from the corresponding V+ by two units. 
In this way, the approach of H R  has been put on a sounder logical basis. 

We do not consider the Coulomb problem because the approach is quite analogous 
and the results of H R  may be reestablished as in this case. 

4. Concluding remarks 

We conclude with some remarks on the evidence for SUSY in the hydrogen-helium 
problem. We recall the result of HR obtained in § 2 that SUSY links states of isoelectronic 
ions under the simultaneous change n + ( n  - 1 )  and Z + Z( 1 - l /n) ,  where n and Z 
stand for the principal quantum number and the nuclear charge, respectively. 

Consider the case of the helium atom. If the orbits of the two electrons are separated 
far apart then, on the average, the Schrodinger equation for the He atom (with nuclear 
charge Z )  separates into two equations [9] 

each of which is the same as the Schrodinger equation for the hydrogen atom. Note 
that E ,  = -Z2/2n: and E> = -Z2/2n:. 

To apply the considerations of SUSY, one should first transform (29) to the full 
line. Then a double degeneracy of the excited states will be found to be between states 
of different n (but same I )  and simultaneously different Z. For instance, let us assume 
that the outer electron of the He atom (namely the one described by (296)) is at the 
n = 2s state. Then if SUSY is exact, a double degeneracy is expected (although approxi- 
mately!) between this state and the one with the same 1 (here I = 0) but with n decreased 
by unity and Z changed to Z(l-;) .  Naively, the latter would correspond to the Is 
state of the H atom since for helium Z = 2. However, keeping in mind the so-called 
charge shielding of the nucleus by the inner electron of the helium atom, one should 
ascribe Z = 1 to the outer electron as the effective charge that it seest. (Certainly, the 
inner electron would have Z = 2.) The energy necessary to liberate this electron is 13.6 
( 12)/(22) = 3.4 eV. The supersymmetric transformations establish a double degeneracy 
between this electron and the one in the Is state of the hydrogen atom but with charge 
Z = $. The ionisation energy in this case also turns out to be 13.6 (f)’/ l 2  = 3.4 eV. 
Since the energy liberated when one electron of the helium atom is removed from the 
2s state is of the order [lo] of 4-5 eV, SUSY is seen to hold to a reasonable degree of 
approximation. 

t We thank a referee for bringing this point to our attention. 



3832 A Lahiri, P K Roy and B Bagchi 

Acknowledgment 

One of the authors ( B B )  thanks Professor N D Sengupta for fruitful discussions and 
Professor Probir Roy for useful comments. 

References 

[ I ]  Witten E 1981 Nucl. Phys. B 188 513 
Cooper  F and  Freedman B 1983 Ann. Phys., N Y  146 262 
Bernstein M and  Brown L S 1984 Phps. Reo. Lett. 52 1933 
Kwong W and  Rosner 1 L 1986 Prog. Theor. Suppl. 86 366 

[2] Kostelecky V A and  Nieto M N 1984 Phys. Ret.. Lett. 53 2285 
[3] Haymaker R W and  Rau A R P 1985 Preprint Lousiana State Uniuersitj 
[4] Rau A R P 1986 Phys. Reu. Lett. 56 95 

[5] Sukumar C V 1985 J.  Phys. A :  Maih. Gen. 18 L57 
[6] Ravndal F 1984 Lectures, C E R N  School of Physics 
[7] Schiff L I 1968 Quantum Mechanics ( N e w  York: McGraw-Hill)  
[8] Roy P and  Roychoudhury R 1986 Z. Phys. C 31 111 
[9] Strauss H L 1968 Quantum Mechanics-An Introduction (Englewood Cliffs, NJ: Prentice-Hall)  

Kostelecky V A and  Nieto M N 1985 Phys. Rev. Lett. 56 96 

[IO] Gasiorowicz S 1974 Quanium Physics (New York: Wiley) 


